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ABSTRACT

Additive Main Effect and Multiplicative Interaction (AMMI) model was
commonly used to analyze Genotype Environment × Interaction with
normal response variables, now it had been generalized for categorical or
other non-normal response variables, called GAMMI model. This devel-
opment was conducted by introducing multiplicative terms to the Gen-
eralized Linear Model (GLM). This research round up our previous work
on developing an approach of Row Column Interaction Models (RCIMs)
comprise to GAMMI model and focus to get more generalized for count-
ing data with overdispersed and zeros problems. A few interesting things
here are (i) an issue of distribution on GLM sense and (ii) an issue of
model’s complexity that is the number of multiplicative terms to fit the
interaction effect more properly. On the distribution issue of counting
data, we will focus on Poisson, Negative Binomial (NB), and zero inflated
problems with Zero Inflated Poisson (ZIP) and Zero Inflated NB (ZINB)
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distribution. A simulation conducted by adding outlier(s) on a Poisson
counting data for overdispersed condition, and adding zeros observation
on the data for illustrating the zero problems. We propose the NB model
for overdispersed data and model of ZIP or ZINB for data with both,
overdispersed and zero problem. In the case of both illnesses conditions
happened simultaneously, the mean square error of NB and ZINB will in-
crease slightly. But the ZINB was resulting the simplest model of RCIM
with less number of interaction terms.

Keywords: Multiplicative Models, Negative Binomial, Overdisperse, Pois-
son, Zero Inflated.
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1. Introduction

AMMI model is commonly used to analyze stability and adaptability on
the Genotype × Environments interaction (GEI) studies. AMMI provide an
additive model for main effects of genotype and environment plus a complete
multiplicative terms for the interaction effects. Basically, the interaction terms
was modeled by a statistical technique of reduction dimension called Singu-
lar Value Decomposition (SVD). With SVD, the interaction terms will have
complete parameters, a paramater for every single cell of the two ways table.
SVD will visualize the interaction terms by Biplot and makes the GEI analysis
become easier. With this feature of Biplot, AMMI said to be most powerful
model for the GEI (Hadi et al. (2010)).

The advantages of AMMI model for the GEI analysis, together with it’s limi-
tation on normality assumption, inspire many statisticians to develop AMMI to
be more generalized by introducing GLM sense to AMMI model. Van Eeuwijk
(1995) propose the Generalized AMMI model which introduce multiplicative
term to GLM. GAMMI also keep the feature of Biplot visualization of GEI.
Nowadays, GAMMI model had been broadly applied to a counting data res-
ponse as in Hadi et al. (2010). Another overlapping methodology is the RCIM
of Yee and Hadi (2014). RCIM is designed for many kind of interaction model
with various response including GAMMI for Poisson count. In case of Poisson
response in two ways table, formula of RCIM look identical to GAMMI model
with log-link function. RCIM was an approach built up on Reduce Rank Re-
gression (RRR) for GLM, it’s called RR-VGLM (Yee and Hastie (2003)) while
GAMMI used a criss-cross regression (Van Eeuwijk (1995)). Computation of
parameter estimate of these two models used the same type of algorithm of
alternating regression, it was confirmed by Turner and Firth (2015) and also
by Yee and Hadi (2014). In spite of this similarity, they are different in model
parameterization and constraint, thus it still allows them to give different re-
sult.

Starting with a framework of statistical development of RCIM as an alter-
native model to GAMMI for two ways table of counting data, this paper want
to deliver a wrap up review of our previous work on application of RCIM to
GEI analysis, and to get more generalized of GAMMI model by an approach
of RCIM model. We focus on the generalization for counting data related to
the limitation problematic of equidispersion assumption of Poisson distribu-
tion (that the conditional means of Poisson data distributed is equal to it’s
variance). With this strict assumption of Poisson, any extreme values of ob-
servation may cause a violation of the pure Poisson distribution. The main
violation here is the overdispersion, when a counting data has variance greater
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than the mean is called overdispersed. A Poisson data distributed with large
mean value will also has a large variance, thus any large extreme value (right
outlier) will be interesting here. On the other hand, any extreme value(s) here
is including a zero valued observation(s). Poisson with a low mean valued may
have extra-zero observations, then here Poisson will mimic a problem called an
extra-zero or a zero-inflation problem.

We found a few interesting issues. The first issue is the data distribution,
about the canonical link function applied on GLM to fit the data properly.
Here, we focus on Poisson and NB distribution, including problems of overdis-
persion by outliers and also zero-inflation with ZIP and ZINB distribution. The
second issue is the model’s complexity. It is about the number of multiplicative
terms involved in the model (represented by rank of model) to describe the in-
teraction effects. A simple scheme of simulation was conducted to present an
overdispersion and zero-inflated condition into a Poisson counting data. Then
we introduce RCIM with NB distribution for handling overdispersed data count
by outliers, also ZIP and ZINB for zero-inflated problem.

2. Row Column Interaction Models (RCIM)

This section will discuss a framework of developing model of RCIM (Figure
1). RCIM will fit data count of two ways table with every single cell containing
row and column effects plus some interaction effects as reduce rank regression
and visualize the interaction terms of rank = 2 by biplot. Here RCIM was very
similar to GAMMI model, where GAMMI was decomposing the interaction
effects by Singular Value Decomposition (SVD) and also visualize it through
biplot for the first two singular vectors. Both approaches give similar results,
differing only in numerical computation aspect and no statistically essential.
Yee and Hadi (2014) said that RCIM is developed from RR-VGLM which is
applied to a matrix data of row-column containing interaction effects by reduce
rank regression. RR-VGLM it self is a variant of Vector GLM (VGLM), as
clearly described in Yee and Hastie (2003). For further reading, there were some
early discussions of RR-VGLM in RCIM context such as Yee and Hadi (2014)
and Hadi and Sa’diyah (2016), we also can find for more wider class of modeling
in Yee (2015). Something important here, that is the compliance of parameter
setting in RR-VGLM. We turn it to the SVD parameterization, and we will
depart to develop RCIM for two way table that comprise to GAMMI model for
the GEI. The RCIMs approach for GEI analysis has introduce an applicative
biplot visualization of the interaction effects in case of Poisson counting data
response with zero-inflated problems (Hadi and Sa’diyah (2014)). Later, Hadi
and Sa’diyah (2016) was supplementing RCIM as alternative way to GAMMI
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model with the deviance analysis for determining the number of multiplicative
terms needed for the interaction analysis or even for handling overdispersion,
both at once. Furthermore, we now will develop RCIM to be more generalized
with Negative Binomial and also Zero Inflated Negative Binomial.
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Figure 1: Statistical framework of The RCIM

2.1 VGLMs and RR-VGLMs

RCIM was built upon VGLMs and RR-VGLMs (see Figure 1). We now
generally, will talk about VGLMs and RR-VGLMs, for more detail the reader
directed to see Yee and Hastie (2003), Yee (2014) and also Yee (2015). Let the
observed response y is a q-dimensional vector. VGLMs are defined as a model
where

f(y|x;B) = h(y, η1, . . . , ηM ) (1)
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for some known function h(·), B = (β1 β2 · · · βM ) is a p×M matrix of unknown
regression coefficients and x is explanatory. The jth linear predictor is

ηj = βTj x =

p∑
k=1

β(j)k xk, j = 1, . . . ,M, (2)

where x = (x1, . . . , xp)
T with x1 = 1 for an intercept.

GLMs only have single linear predictor of η for the mean, but VGLMs may
have more, each may be applied to a certain parameters of a distribution. For
example, a univariate distribution has two parameters of the location parame-
ter a and the scale parameter b. Then we might take two linear predictors of
VGLM here, η1 is for a and η2 is for b. In general, ηj = gj(θj) for some certain
link function gj and parameter θj . VGAM offers many link functions, that
can be assigned to any parameters, ensuring maximum flexibility.

Most VGLMs have a log-likelihood which is maximized. Let xi denote the
explanatory vector for the ith observation, for i = 1, . . . , n. Then we can write
the equation 2 as

ηi =

 η1(xi)
...

ηM (xi)

 = BTxi =

 βT1 xi
...

βTMxi

 . (3)

The IRLS algorithm behind VGAM almost always implements Fisher scoring
based on the expected information matrix (EIM) at the individual i level.

In practice we may wish to constrain the effect of a covariate to be the same
for some of the ηj and to have no effect for others. For example,

η1 = β∗(1)1 + β∗(1)2 x2 + β∗(1)3 x3,

η2 = β∗(2)1 + β∗(1)2 x2,

so that β(1)2 ≡ β(2)2 and β(2)3 ≡ 0. The star superscript denote regression
parameters that are actually estimated. For VGLMs, we can represent these
models using

η(x) =

p∑
k=1

β(k) xk =

p∑
k=1

Hk β
∗
(k) xk (4)

where H1,H2, . . . ,Hp are known full-column rank constraint matrices, β∗(k) is
a vector containing a possibly reduced set of regression coefficients. With no
constraint at all, all Hk = IM and β∗(k) = β(k). Then

BT =
(
H1β

∗
(1) H2β

∗
(2) · · · Hpβ

∗
(p)

)
. (5)
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2.1.1 The RR-VGLMs

Represent the VGLMs of (1) and its linear predictor of (2), we now turn
to partition x into (xT1 , x

T
2 )T and B = (BT

1 BT
2 )T . In general, B is a full rank

matrix of min(M,p). There are M × p regression coefficients to be estimated.
In some cases, it would be a problem here like degree of freedom deficiencies or
other problems regarding that is too many parameters to be estimated. Now
we need a method of dimension reduction here. That is to replace B2 by an
RRR of B2 = ACT with lower rank of R ≤ min(M,p) matrices of A and
C. This reduction of the number of regression coefficients will done efficiently
by put R as low, e.g., 0 or 1 or 2. Something grab our attention for the next
feature of our model. That is a fact that by taking R = 2, the Â and Ĉ may
be biplotted. The reduced-rank regression is applied to B2 because we want to
make provision the variables in x1 to be left alone for the intercepts.

Now we have the RR-VGLMs of the form

η = BT
1 x1 + BT

2 x2 = BT
1 x1 + ACTx2 = BT

1 x1 + A ν (6)

where C = (c(1) · · · c(R)) is p2 × R, A = (a(1) · · · a(R)) = (a1, . . . , aM )T is
M × R. Both A and C are of full-column rank. Of course, R ≤ min(M,p2)
but ideally we want R � min(M,p2). One can think of (6) as a reduced-rank
regression of the coefficients of x2 after having adjusted for the variables in x1
(commonly x1 is left as the intecept of µ).

In order to make the parameter being unique, we may enforce identifiability
constraint to restrict A to the form

A =

(
IR

Ã

)
, say, (7)

called corner constraints. Actually, it may be necessary to represent IR in
rows other than the first R; this is controlled by the argument Index.corner
which has value 1:Rank as default. It transpires that RR-VGLMs are VGLMs
where the constraint matrices are estimated. An alternating algorithm is used
which toggles between estimating A and C one at a time based on the current
estimate of the other.
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2.2 Row-Column Interaction Model for Data count in the
RR-VGLM

2.2.1 Goodman’s Row-Column association model

Hadi and Sa’diyah (2014) use an association model of Goodman’s Row-
Column (GRC) of Goodman (1981) to describe the RCIM model in the RR-
VGLMs framework, by firstly assuming that Y = [(yij)] is a n ×M matrix
of counts and Yij has a Poisson distribution, E(Yij) = µij is the mean of the
i-j cell. Goodman’s RC(R) association model fits a reduced-rank type model
to Y, and the linear predictor is

log µij = µ+ αi + γj +

R∑
r=1

cir ajr, (8)

where i = 1, . . . , n, j = 1, . . . ,M . Note that (8) is saturated when R =
min(n,M).

In (8) the parameters αi and γj are called the row and column scores (or
effects) respectively. Identifiability constraints are needed for these, such as
corner constraints, e.g., α1 = γ1 = 0. The parameters air and cjr also need
constraints, e.g., a1r = c1r = 0 for r = 1, . . . , R.

We can write (8) as

log µij = µ+ αi + γj + δij ,

where the n ×M matrix ∆ = [(δij)] of interaction terms is approximated by
the reduced rank quantity

δij =

R∑
r=1

cir ajr. (9)

The GRC association model fits within the VGLM framework of (6) by
letting

ηi = log µi (10)

where µTi is the mean of the ith row of Y. Then the GRC model will fit the
matrix (η1, . . . , ηn)T using RRR by setting up the indicator variables in BT

1 x1i.
The reader directed to Yee and Hadi (2014) and Yee (2015) for further reading
about how to get the appropriate indicator variable setting. Similarly, B2 is
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approximated by CAT , the ∆ is approximated by x21
...
x2n

CAT

The desired reduced-rank approximation of ∆ can be obtained if x2i = ei so
that Ip2CAT = CAT . Note that

∆ =

(
0 0T

0 ∆̃

)
≈ CAT

=

(
0T

C(−1)

)(
0
(
A(−1)

)T )
, (11)

that is, the first row of A consists of structural zeros which are ‘omitted’ from
the reduced rank regression of ∆ (Yee and Hastie (2003)).

2.2.2 The RCIMs, GAMMI models, and SVD reparametriation

Finally, we define RCIMs as a RR-VGLM with

η1ij = µ+ αi + γj +

R∑
r=1

cir ajr, (12)

Note that (12) applied to the first linear/additive predictor; for models withM >
1 one can leave η2, . . . , ηM unchanged. Of course, choosing η1 for (12) is only
for convenience and is the default.

GAMMI model of Van Eeuwijk (1995) as described in Turner and Firth
(2015), use the singular value to factor out a measurement of the strength of
interaction between the row and column scores corresponding to each multi-
plicative component. It is indicating the importance of the component, or axis.
For cell means µij a GAMMI-R model has the form

g(µij) = αi + βj +

R∑
k=1

σkγkiδkj (13)

Based on (13) GAMMI model appear to be identical to RCIMs. Here GAMMI
apply a SVD to the ACT , and also some constraints of

∑
∀i αi =

∑
∀i γi = 0,

the parameters air and cjr use constraints of
∑
∀i a1r =

∑
∀i c1r = 0 for

r = 1, . . . , R (Van Eeuwijk (1995)). While in RCIMs, the interaction term
uses corner constraints. The advantage of RCIMs is that it should work

Malaysian Journal of Mathematical Sciences 123



Hadi, A. F., Sa’diyah, H. and Iswanto, R.

for any VGAM family functions, thus the family size is much bigger (Yee
and Hadi (2014), Yee (2010), Yee (2008)). It is easy to perform some post-
transformations such as applying a function of svd() to the VGAM output to
obtain the SVD parameterization for GAMMI model (Yee and Hadi (2014)).
Now we can see that GAMMI is an RCIMs with some other parameterization
of SVD related to what described in Yee and Hastie (2003).

3. Material and Methods

This research use three datasets which are originally obtained from the ex-
perimental trial conducted by Indonesian Legumes and Tuber Crops Research
Institute (ILETRI), Malang, Indonesia. The first dataset comes from the ex-
perimental trial of study the endurance of five genotypes of soybean to 5 types
of its leaf pests. The second dataset comes from a study of leaf disease at-
tack on mung bean. The experimental trial involved 12 genotypes (varieties)
of mung bean which planted in 5 different environments at Probolinggo, Jom-
bang, Jember, Rasanae, and Bolo. The third dataset obtained from a study of
soybean in ILETRI. This experiment uses 15 types of soybean lines grown at
8 locations with a number of soybean pods. This is a counting data without
outlier neither zero observation, which is presented in the form of a matrix with
a size of 15 × 8.

3.1 Methodology

We will use the 1st dataset of Poisson distributed to summarize our develop-
ment of deviance analysis feature of RCIM to determine the rank of model for
analyzing the interaction terms as provided by GAMMI. A biplot of the inter-
action analysis was also provided by RCIM. A study of outlier, overdispersion,
and the NB model will be discussed by conducted a scheme of simulation on
the 3rd dataset to make an illness condition of overdispersion by outliers. We
impose the outliers of about 20 percent cells of 15 × 8 cells data matrix. With
this simulated dataset, we investigate the influence outliers to the estimated
value of dispersion parameter in a standard Poisson model. We also discuss
about the use of NB distributional with its canonical link-function to overcome
the overdispersion compared to the standard Poisson model with more inter-
action terms in the model. We compare the log-likelihood and also the MSE of
the Poisson and NB models. In addition we investigate the influence of the per-
centages of outliers to the MSE of Poisson and NB models by setting increment
of 0.8%, 1.7%, 2.5%, . . . , 19.2% of outliers in 15 × 8 cells data matrix.
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We discuss the zero problem in RCIM by firstly summarize our previous
development of introduce the ZIP distribution to our RCIM model, and apply
ZIP RCIM to the 2nd dataset also comparing to standard Poisson one by it’s
log-likelihood value. Next, we introduce a ZINB distribution on RCIM, and
conduct a scheme of simulation to add three zeros into the 3rd dataset by
replacing the three smallest value observations at every column by zeros. Here,
we got a lot of zeros on the 3rd dataset and we compare the MSE of the NB
and the ZINB. For both illnesses condition of outliers and zeros in one dataset,
we replace the maximum value by the outlier, and the smallest three values
by zeros simultaneously into the 3rd dataset. Again, we compare the MSE of
the NB and ZINB model. Last, we compare the NB and ZINB for a data with
structural zero as we got in 2nd dataset. We also add outlier(s) by replacing
the maximum value observation at every column by a value of max(column)
+ 3 × stdev(column). So we compare the MSE of NB and ZINB to the data
with structural zeros and also outliers at once.

4. Result and Discussion

4.1 An Application of RCIM for GAMMI Models: The
Deviance Analysis and Biplot of RCIM

The first dataset Table (1) contain the population count of 5 types of leaf
pest on four soybean genotypes. It was originally analyzed by Hadi et al. (2010)
on the Poisson distribution with the GAMMI model proposed by Van Eeuwijk
(1995).

Table 1: The 1st dataset: Count of population of Leaf Pests on some Soybean Genotypes

Leaf Pests
Genotype Bemisia Empooascan Agromyza Lamprosema Longitarsus

tabacci sp. phaseoli indicata suturellinus
AC100 2 7 9 2 7
IAC80 12 11 4 7 13
W80 14 12 5 8 8
Wilis 16 12 4 7 16

The deviance for a model of µ is defined as the ratio the likelihood of the
saturated model L(y; y) denumerated by the likelihood of the particular model
L(µ; y) (Pawitan (2001)):

D = 2 log
L(y; y)

L(µ; y)
(14)
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It measures the distance between a particular model µ and the observed
data y. Deviance is also commonly used to compare the two nested models
with different rank. Suppose we have two models, model A with µA have X1β1
of rank p and model B with µB have X1β1 + X2β2 with rank of q, for p less
than q. The difference in the observed deviance

D(y, µ̂A)−D(y, µ̂B) = 2 log
L(y; y)

L(µ; y)
(15)

is the usual likelihood ratio test for the hypothesis H0 : β2 = 0.

Table 2: The Deviance Analysis of RCIM Models for testing the Rank=2

Source df Deviance Mean Ratio of Mean p-valueDeviance Deviance
Leaf Pests (column) 4 16.7380 4.1845 78.38 0.01283
Genotype (row) 3 11.3434 3.7812 70.83 0.01423
GAMMI1 (rank=1) 6 14.6836 2.4473 45.84 0.02172
GAMMI2 (rank=2) 4 3.7908 0.9477 17.75 0.05482
Residual 2 0.1068 0.0534
Total 19 46.6626 2.4560

Here we used RCIM model by VGAM Package with the function of rcim.
From (15), one can provide analysis of deviance that is commonly used in the
GAMMI model of Van Eeuwijk (1995), as provided in Table 2. We obtained
the deviance of additive models (with no interaction term) by subtracting the
residual deviance of the null model by residual deviance in each model. The
deviance of GAMMI1 model obtained from a subtracting the residual deviance
of rank = 0 model by its of rank = 1 model, with corresponding degree of
freedom, then we continue for GAMMI2, GAMMI3 models and so on. For
more details of this calculation, please see Hadi and Sa’diyah (2016). With this
analysis of deviance, Hadi and Sa’diyah (2016) concluded that the interaction
analysis was best fitted by RCIM with rank of 2 (or GAMMI2 model) with
log-link. Then the visualization of the interaction effects was done by Biplot
of RCIM with rank of 2. This Biplot based on RCIM approach (Figure 2)
was verified statistically, that there is no clearly difference to the Biplot from
GAMMI model of Van Eeuwijk (1995) as figure out and well described in Hadi
et al. (2010) .
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Figure 2: The Biplot of RCIM rank=2 for endurance of varieties of soybean to some leaf pests.

4.2 RCIM with Overdispersion problem on Counting Data:
A Negative Binomial Distribution

Poisson models assume a strict relationship between the mean and variance
that may not appropriate for some counting data. Practically, a common cause
of overdispersion is an additional variation to the mean or heterogeneity, par-
ticularly may caused by outlier(s) (Hadi and Sa’diyah (2016)). Nevertheless,
overdispersion can occur mathematically, if the conditional mean of an out-
come Yµ was Poisson random variable with mean µ, and the µ is also random
variable with mean Eµ and variance σ2.

For example, plants vary in the propensity to their leaves to be infected by
insect of leaf pest, eventhough the number of infected leaf per individual is a
Poisson distribution, the marginal distribution of Yµ has mean and variance
respectively as follows:

E(Yµ) =E[E(Yµ|µ)]

=Eµ

var(Y ) = E[var(Yµ|µ)] + var[E(Yµ|µ)]

= Eµ+ var(µ)

= Eµ+ σ2

The mean and the variance above are indicating an extra variability to
the pure Poisson model. If µ was a gamma distributed random variable with
parameter of integer α we will get the marginal probability as negative binomial
distribution (Pawitan (2001)).
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This section will discuss the problem of overdispersion in RCIM modeling,
starting with investigation of the influence of outlier(s) in Poisson count data
from an overdispersed simulated data and then we propose the RCIM with
NB distribution for this illness condition of overdispersion. A dataset mainly
used here was the response of a number of non-empty soybean’s pods from
an experiment involving 15 types of soybean lines in 8 locations. There was
no outlier neither zero observation. A simulation then carried out by adding
outlier(s) to learn whether it will shift the estimated value of the dispersion
parameter getting larger than it should be. The imposing of outlier in to
the data was completed by adding a tripled standard deviation of each row
(column) to the cell containing the maximum value of its row (column). We
added up to 20 outliers into the rows and columns observation of data matrix
of the 3rd dataset, we have simulated data matrix that contains up to 19.2 %
cells of outliers.

4.2.1 Overdisperse in Poisson Count Data: Outlier and The Dis-
persion Parameter

Here we briefly summarize the magnification in estimated value of dispersion
parameter influenced by outlier in Poisson model of RCIM, also straighten out
some less informed about the log-likelihood comparison on our previous study
on Hadi and Sa’diyah (2016). Table 3 showed that outliers made a suffer illness
of overdispersion.

Table 3: Estimated value of Dispersion Parameter for standard Poisson Model of RCIM

Model
Overdispersed with no outlier Overdispersed with Outliers

Deviance df Estimated Deviance df Estimated
Dispersion Dispersion

Rank = 1 170.615 20 8.531 201.868 20 10.093
Rank = 2 99.284 18 5.516 119.123 18 6.618
Rank = 3 61.391 16 3.837 69.151 16 4.322
Rank = 4 30.348 14 2.168 35.177 14 2.513
Rank = 5 14.192 12 1.183 16.680 12 1.390
Rank = 6 4.869 10 0.487 5.617 10 0.562

In lower rank of RCIM, Poisson with log-link failed to fit the overdispersed
Poisson counting data with or without outlier. Since the dispersion parameter
larger than 1, it may cause a problem in hypothesis testing of parameter models
determining best fit ones. However, in higher rank model of RCIM, the Poisson
model may overcome the overdispersion, this is shown by the estimate value
of dispersion parameter of rank = 5, less than 1.25 for Poisson data without
outlier. But for overdispersed data by outliers, the estimated value of dispersion
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parameter is still larger than 1.25 at rank = 5 model of RCIM. As Hilbe (2011)
suggested using Poisson regression, if the dispersion value of less than or equal
to 1.25, we should worry to use Poisson model of RCIM for this data containing
outlier, unless we use full model of rank = 6.

4.2.2 Overdisperse in RCIM: Canonical Link Function and Multi-
plicative Term

With the same datasets as previous section (4.2.1), we now try to do RCIM
with other distribution function of NB in spite of usual Poisson to model an
overdispersed counting data. In case of there was no outlier in overdispersed
counting data, the NB model of RCIM could overcome the overdispersion better
than Poisson, generally for all rank of RCIM. Poisson can do it by the rank
= 2 model or by model with more complex interaction terms to get equal log-
likelihood value. See Table 4 for rank = 2 (or more) of Poisson RCIM had the
same log likelihood value.

In case of there was a suffer overdispersion by outliers, NB model provide
similar information of overcoming the overdispersion problem. But here, Pois-
son need one more rank of 3 to do it with equal log-likelihood value as the NB
model.

Table 4: The Log-Likelihood of RCIM models (with canonical link function) affected by outliers

Model Overdispersed no outlier Overdispersed with Outlier(s)
Poisson Regression NB Regression Poisson Regression NB Regression

Null -2198.594 -631.832 -2281.542 -634.415
Rank = 0 -547.002 -496.746 -588.291 -508.626
Rank = 1 -454.704 -451.278 -471.524 -462.886
Rank = 2 -419.038 -419.038 -430.151 -430.076
Rank = 3 -400.092 -400.092 -405.165 -405.165
Rank = 4 -384.570 -384.570 -388.178 -388.178
Rank = 5 -376.492 -376.492 -378.929 -378.930
Rank = 6 -371.831 -371.831 -373.398 -373.398
Rank = 7 -369.397 -369.397 -370.590 -370.590
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Table 5: The MSE RCIM Model with Poisson and Negative Binomial Distribution

Data Model Poisson Negative Binomial

Overdispersed
data with no
outlier

RCIM 1 0.021562830 0.020838680
RCIM 2 0.012077778 0.012077740
RCIM 3 0.008437611 0.008434989
RCIM 4 0.005427515 0.005427515
RCIM 5 0.002552477 0.002552321
RCIM 6 0.000600769 0.000600608

Overdispersed
data with
outliers

RCIM 1 0.025835524 0.024468820
RCIM 2 0.014287709 0.014146090
RCIM 3 0.009145594 0.009145374
RCIM 4 0.005893773 0.005893766
RCIM 5 0.002428332 0.002428258
RCIM 6 0.001028197 0.001028055

Table 5 contain the MSE that shows how close the predicted value of the
model to its actual observation data. Here we got similar information that in
general, (1) the outliers will affect the model to get the larger MSE, (2) the
NB give a better fit to observation than Poisson with smaller MSE. It was
also confirmed here that Poisson with rank = 4 of RCIM model had fitted the
overdispersed data with no outlier as good as the NB model by exactly the
same value of MSE. But for overdispersed data containing outliers, there is
none of the rank of the Poisson model that can fit the outliers data as good as
the NB model.

We now turn to discuss the influence of the percentages of outliers in the
data by setting increment of 0.8%, 1.7%, 2.5%, . . , 19.2% of outliers in the 15
× 8 data matrix. Figure 3 shows that on a multiplicative model with lowest
rank (rank = 1 and rank = 2) NB model of RCIM perform better than Poisson
model, by smaller MSE. But in the more complex model, Poisson model give
an exactly equal MSE to NB model. Here we can say that Poisson model can
handle the overdispersion by involving more interaction terms in its model.
The more complex the model, the more severe overdispersed can be handled.
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Figure 3: The MSE of RCIM rank=1, 2, 3 and 4 for Poisson and Negative Binomal (NB) Distri-
butions on Simulated Data containing 0.8% - 19.2% outliers

4.3 RCIM with Excess Zero Problems on Counting Data

Another problem of Poisson counting data that will be discussed here is
the excess zero observations. Again, this problem was coming out with well-
known assumptions of Poisson, that is equidispersion. A Poisson count with
small value of mean should also have small value of variance. In this case,
Poisson potentially to have a number of zero observations might be more than
its expected. With this zero-inflation, the underlying distributional assumption
of Poisson may not be met. We also need to consider here is the possibility of
overdispersion. The zero-inflation and overdispersion may occur simultaneously
in a data set. Zero inflated models are often discussed in additive modeling,
but less in multiplicative model, like GAMMI or even more RCIM.

Practically, in the study of GEI, the response variable may be an observa-
tion of counting data measuring the lower the better. Researcher expected to
get a genotype with more zero count of attack at more environments. There
would be inflation of zero. With this kind of zero observation, there were some
other approaches of distributional data to model zero-inflated count data, that
concern to classify the zero observation into two groups, ie. a zero-modified
distributions (zero-altered, zero-truncated, distribution with added zero) or a
mixture distribution (zero-inflated distribution).
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In this mixture distribution of zero-inflated, the zero will be classified into
two groups, a group of positive (discrete) count distribution (Poisson or NB)
occur with probability of 1−ω; the other represent the ’extra’ zero, occur with
probability of ω.

4.3.1 Zero-inflated Poisson in the RR-VGLM

ZIP model is powerful in dealing with counting data with excess zeros than
the usual Poisson distribution, partly it is because the ZIP model also handles
overdispersion. To see that, we will write down the probability mass function
(p.m.f.) of the ZIP in two stages with two-components mixture distribution.

f(Y |θ, ω) =

{
(1−ω)e−θθy

y! , for y = 1, 2, 3, ...

ω + (1− ω)e−θ, for y = 0;with 0 ≤ ω < 1
(16)

Hadi and Sa’diyah (2014) write down the expectation of the p. m. f. to get
the mean and variance of ZIP as E(Y ) = µ and var(Y ) = µ+ (ω/(1− ω))µ2.
For positive ω, the conditional distribution shows an overdipersion and the ZIP
will turn to a standard Poisson if ω = 0. The log-likelihood function of a vector
of random sample ZIP distributed as l(θ, ω;y), please see Hadi and Sa’diyah
(2014) for more detail and also to get the joint model for ω and θ as

log ( ω
1−ω ) = Gγ and

log (θ) = XB
(17)

And in the linear predictors of RCIM model as (12) we now write η1 and η2 as

η =

(
η1
η2

)
=

(
logit ω
log µ

)
(18)

There are two processes of how the data occurs, the first data is zero and the
second is Poisson count data. Both processes are modeled respectively by η1
and η2.

Which in the fact now, can be seen simply that this is a dimension reduction
regression models ZIP or reduced-rank zero-inflated Poisson model (RR-ZIP).
RR-ZIP is given by

logit ω = η1 = β(1)1 + α(1)1.η2 (19)

log µ = η2 = βT2 X (20)

with β(1)1 and α(1)1 are coefficients who want predictable.
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With (19) and (20) the RR-ZIP model of rank=1 has H1 = I2 and H2 =

. . . = Hp =
(
α(1)1

)T . There is a trivial complication that the constraint angle
(can use other constraints) imposed on parameters that are used instead of the
first two. This can be simplified if the order parameter exchanged.

4.3.2 An Application of ZIP of RCIM for analysis of the GEI

Table 6 is the dataset of Hadi and Sa’diyah (2014). In this table we focused
on the endurance to leaf rust disease. The cells is the number of crops attacked
by leaf-rust observed in three replications. A genotype with large numbers in-
dicate the most vulnerability, and in vice verse, the smaller number the better
endurance. The zeros on the observation in Probolinggo sometimes called es-
cape observation, where all the columns on this row are zero. The ZIP model
relies on the assumption that zero are as structural and random ones. The ZIP
model will provide us the probability of the cell to be zero, and the fitted value
for Poisson count, as well.

Table 6: The 2nd data set: Count of Leaf Rust Disease Attacks on Mung Bean

Genotype Environments
Proboliggo Jember Jombang Bolo Rasanae

MLG1002 0 167 100 150 150
MLG1004 0 217 250 233 250
MLG1021 0 200 217 183 217
MMC74dkp1 0 133 200 183 133
MMC71dkp2 0 200 200 233 367
MMC157dkp1 0 133 150 167 150
MMC203dkp5 0 50 100 67 83
MMC205e 0 50 67 100 67
MMC100fkp1 0 50 83 83 83
MMC87dkp5 0 83 117 133 83
MURAI 0 0 50 33 33
PERKUTUT 0 67 133 117 117

The data were analyzed using RCIM model, following Turner and Firth
(2015) work on the Poisson distribution with the GAMMI model of Van Eeuwijk
(1995). Determining the rank=2 model, here we use the deviance analysis
rather than the log-likelihood ratio test as previously used in Hadi and Sa’diyah
(2014).
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Since Table 7 showed that the rank = 3 of ZIP model of RCIM does not fit
the data properly (p-value is greater than 0.05), then Table 8 determine that
ZIP model of rank = 2 is the best way to explain the structure of the main
effects of additive and multiplicative interaction. With this rank = 2 of RCIM-
ZIP model, the biplot is presented in Figure 4. It was done by run an RCIM
model with rank = 0 and SVD-reparameterization on the working residuals to
get the interaction visualization with rank = 2. The biplot variability is shown
by the eigenvalues of matrix interaction. The first two eigenvalues, explain the
total variability of the Biplot, that is 72.78%. The reader is recommended to
see Hadi and Sa’diyah (2014) in order to get more interpretation information
about the GEI analysis of the biplot of Figure 4.

Table 7: The Deviance Analysis to test rank = 3 ZIP model of RCIM

Source df Deviance Mean Ratio of Mean p-valueDeviance Deviance
Main Effects (Rank =0) 14 198.8616 14.2044 29.49009463 2.5013E-05
RCIM Rank = 1 14 64.9406 4.6386 9.63033808 0.001572204
RCIM Rank = 2 12 19.7904 1.6492 3.42394357 0.044636088
RCIM Rank = 3 10 0.3172 0.0317 0.06585450 0.999882848
Error 8 3.8533 0.4817
Total 58 287.7631

Table 8: The Deviance Analysis to test rank = 2 ZIP model of RCIM

Source df Deviance Mean Ratio of Mean p-valueDeviance Deviance
Main Effects (Rank =0) 14 198.8616 14.2044 61.30610867 2.9137E-12
RCIM Rank = 1 14 64.9406 4.6386 20.02023257 3.80108E-08
RCIM Rank = 2 12 19.7904 1.6492 7.11793771 0.000125675
Error 18 4.1705 0.2317
Total 58 287.7631
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Figure 4: Biplot of the interaction effect on Log-scale of Zero-inflaated Poisson

4.3.3 Comparing a ZIP to a Poisson model in RCIM

Comparing ZIP model with Poisson model was done by Hadi (2012) using
dataset with zero-inflated of Table 6. Hadi (2012) said that Poisson model
faced difficulties of computing in the estimation model of rank = 3. This
failure is expected to occur due to the failure of eigenvalue calculation because
there is an infinite calculation. Meanwhile, at a lower rank, the log-likelihood
of ZIP model indicates that it is better than Poisson model. Obtaining the
best model depends on two things. The first is the link-functions concerning
the distribution of data and interpretation of the model, and the second is the
decomposition of the interaction, in this case, it is determined by the rank
used. The higher the rank used, the more complex model we’ll get. In the
more complex model, together with the distribution and its canonical link-
function, the estimation parameters will paid a longer iteration of computing.
Both of these works are inter-related and unseparable, especially when there is
overdispersion and/or excess zero. The best fit model can be obtained by the
use of distribution and proper link-function, and at the same time, also by the
degree of decomposition of the interaction (rank models).
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Now we will use the 1st dataset of Table 1 that is modeled by a Poisson
model to be compared with the ZIP model for count data with no zero problems.
The RCIM ZIP able to model the structure of interaction on Poisson counting
data even though it contains no zero observation at all. This capability is
indicated by ZIP model, since it has very similar results to Poisson models.
Table 9 shows that log-likelihood value of the ZIP model is exactly the same
as Poisson model for a counting data with no zero.

Table 9: The Log-likelihood of ZIP and Poisson model of RCIM for data count with no zero

Model The ZIP Standard Poisson
RCIM FullRank=3 -39.04556 -39.04556
RCIM Rank=2 -39.09895 -39.09895
RCIM Rank=1 -40.99432 -40.99432
Main Effects(Rank=0) -48.33612 -48.33612

4.3.4 RCIM with Zero Inflated Negative Binomial Distributions

In this section, we will propose the ZINB for both overdispersion and/or
excess zero. Zero inflated Negative Binomial (ZINB) is one of the methods used
to deal with problem of overdispersion in a case of excess zero. ZINB formed
by Negative Binomial distribution, mixture of the Poisson-Gamma and excess
zero. A Negative Binomial distribution has parameters µ and α, the p. m. f.
of random variable Y NB distributed can be written as:

fNB(y;µ, α) =
Γ
(
yi + 1

α

)
yi! Γ

(
1
α

) ( 1
α

1
α + µi

) 1
α
(

µi
1
α + µi

)yi
(21)

A random variable Y of ZINB distribution has a valued of zero with probability
of ω and follows the NB distribution with probability of (1 − ω). For Y = 0
occur with probability of ω, then Y has p. m. f. of the form:
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fZINB(y = 0;µ, α, ω) = ω + (1− ω)fNB(y = 0;µ, α)

= ω + (1− ω)
Γ
(
0 + 1

α

)
0! Γ

(
1
α

) ( 1
α

1
α + µ

) 1
α
(

µ
1
α + µ

)0

= ω + (1− ω)
Γ
(
1
α

)
Γ
(
1
α

) ( 1
α

1
α + µ

) 1
α

= ω + (1− ω)

( 1
α

1
α + µ

) 1
α

The rest occur with probability of (1− ω), Y = 1, 2, . . . , along with NB distri-
bution:

fZINB(y 6= 0;µ, α, ω) = (1− ω) fNB(y 6= 0;µ, α)

= (1− ω)
Γ
(
y + 1

α

)
y! Γ

(
1
α

) ( 1
α

1
α + µ

) 1
α
(

µ
1
α + µ

)y

And the mixture distribution of ZINB means for ω = 0, the mean and
variance of ZINB will be equal to mean and variance of NB:

E(Y ) = (1− ω)µ

E(Y ) = (1− 0)µ

E(Y ) = µ

V ar(Y ) = E(Y )(1 + αµ+ ωµ)

V ar(Y ) = (1− 0)µ(1 + αµ+ ωµ)

V ar(Y ) = µ(1 + αµ)

As described in previous section, we will apply the linear predictors of RR-
VGLM directly to those three parameters of ZINB distribution. We then com-
pare the MSE of the ZINB versus the NB. Table 10 represents the MSE of the
two methods (ZINB vs NB) on an overdispersed count data with zero’s prob-
lems as we get from our simulation scenario. It shows that the MSE of ZINB
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model is better than NB. It is concluded that RCIM ZINB fits excess zeros
data better than NB. Now we will move forward to discuss ZINB performance
with respect to the presence of outliers and excess zeros at once on the counting
data.

Table 11 contains the MSE of NB and ZINB model for data with severe
illnesses conditions, which is (i) overdispersed counting data due to outliers
and (ii) having zero problems, simultaneously. It seems that the MSE of ZINB
model always smaller than NB’s at any ranks. This shows that ZINB model
fits the data (overdispersed with extra zeros) better than the NB model. Last
but not least, we also evaluated the performance of ZINB model to count data
containing structural zero of Table 6. Table 12, which represents the MSE of
NB and ZINB on counting data with structural zero, shows that although the
ZINB can provide smaller MSE than the NB’s at low rank of RCIM (rank = 1
and 2), but at higher rank (rank = 3), NB performs better than ZINB one.

Table 10: The MSE of Negative Binomial (NB) and ZINB on overdispersed data with zero

Model MSE NB MSE ZINB
RCIM rank = 1 0.20876010 0.07589846
RCIM rank = 2 0.09743042 0.07504630
RCIM rank = 3 0.10276670 0.02441078
RCIM rank = 4 0.05146207 0.01666468
RCIM rank = 5 0.02056970 0.00899084
RCIM rank = 6 0.02681639 0.00535431

Table 11: The MSE of Negative Binomial and ZINB model on data with both outliers and extras
zero (3rd scenario)

Model MSE NB MSE ZINB
RCIM rank = 1 0.25555470 0.08142671
RCIM rank = 2 0.14247590 0.07504630
RCIM rank = 3 0.07846524 0.05165929
RCIM rank = 4 0.05101145 0.05012614
RCIM rank = 5 0.02153536 0.00899084
RCIM rank = 6 0.01880404 0.00535431

Table 12: The MSE of Negative Binomial and ZINB model on count data with structural zero

Model MSE NB MSE ZINB
RCIM rank = 1 0.02549026 0.02143623
RCIM rank = 2 0.01268638 0.01260851
RCIM rank = 3 9.86e-06 0.01209246

138 Malaysian Journal of Mathematical Sciences



On Generalization of AMMI Models: An Approach of RCIM for Counting Data

Table 13: The MSE of Negative Binomial and ZINB model on data with structural zero and also
outliers at once (4th scenario)

Model MSE NB MSE ZINB
RCIM rank = 1 0.02187914 0.03839160
RCIM rank = 2 0.02145327 0.05245484
RCIM rank = 3 1.06e-05 0.01474227

Table 13 presents the MSE of ZINB models for data containing both struc-
tural zero and outliers at once. It seems that it is similar to Table 12, that
ZINB better than NB at the lower rank model of RCIM, but less at higher. It’s
clear that ZINB can be relied upon to model the data with structural zero with
the simplest interaction terms of RCIM. If we take a look at both Table 12 and
13 across rows at the same column, we can see that when outliers come to data
with structural zeros, the MSE of both NB and ZINB will increase slightly.

5. Concluding Remark

Here we conclude that in multiplicative modeling, the overdispersion prob-
lems of counting data can be handled in two ways. First by choosing the canon-
ical link function of the distributional data. With the same rank of complexity
the NB can do better than usual Poisson.

The second, we make model the overdispersion by involving some more
multiplicative terms in our model. The standard Poisson model can fit the
overdispersed data properly with more complex multiplicative model than the
NB one.

The ZIP model may overcome the problem of zero inflated, including the
counting data with structural zero. The ZIP give us the same result as Poisson
for the data with no zero. We proposed the ZINB model for overdispersed
counting data with excess zero, structural zero or containing outliers. The
ZINB model result better fitted value for those counting data problems, by the
smaller MSE in multiplicative modeling.
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